Главное меню

Реклама

7.6. Физиология дыхания

Биомеханика дыхательного акта. Частота дыхания (ЧД) в по­кое составляет 14 —18 в минуту и обеспечивается дыхательными мыш­цами. Учащенное дыхание называют тахипноэ, а редкое — брадипноэ. Различают мышцы вдоха и выдоха. Первые в свою очередь классифицируют на основные и вспомогательные. При этом вспо­могательные мышцы включаются в обеспечение вдоха только в эк­стренных ситуациях, а в обычных условиях они выполняют иные функции. К основным мышцам вдоха относят: диафрагму, наружные межреберные мышцы и мышцы, поднимающие ребра. Во время вдо­ха объем грудной полости увеличивается в основном за счет опуска­ния купола диафрагмы и поднимания ребер. Диафрагма обеспечи­вает 2/3 объема вентиляции. В обстоятельствах, затрудняющих вен­тиляцию легких (бронхиальная астма, пневмония), в обеспечении вдоха принимают участие вспомогательные мышцы: мышцы шеи (грудино-ключично-сосцевидная и лестничные), груди (большая и малая грудные, передняя зубчатая), спины (задняя верхняя зубчатая мышца).

Мышцами выдоха являются: внутренние межреберные мышцы, подреберные мышцы и поперечная мышца груди, задняя нижняя зубчатая мышца. При этом вдох идет более активно и с большей за­тратой энергии. Выдох же осуществляется пассивно под действием эластичности легких и тяжести грудной клетки. Сокращение мышц на выдохе имеет вспомогательный характер.

Выделяют два типа дыхания — грудной и брюшной. При грудном типе преобладает увеличение объема грудной клетки за счет подни­мания ребер, а не за счет опускания купола диафрагмы. Этот тип дыхания более характерен для женщин. Брюшной тип дыхания обес­печивается в первую очередь диафрагмой. При опускании купола происходит смещение органов живота вниз, что сопровождается выпячиванием передней брюшной стенки на вдохе. На выдохе купол диафрагмы поднимается и передняя брюшная стенка возвращается в исходное положение. Брюшной тип дыхания чаще наблюдается у мужчин.

Механизм первого вдоха новорожденного. Легкие начинают обеспечивать организм кислородом с момента рождения. До этого плод получает 02 через плаценту по сосудам пуповины. Во внутри­утробном периоде происходит бурное развитие дыхательной системы: формируются воздухоносные пути, альвеолы. Следует отметить, что легкие плода с момента их образования находятся в спавшемся со­стоянии. Ближе к рождению начинает синтезироваться сурфактант. Установлено, что, еще находясь в организме матери, плод активно тренирует дыхательную мускулатуру: диафрагма и другие дыхатель­ные мышцы периодически сокращаются, имитируя вдох и выдох. Однако околоплодная жидкость при этом не поступает в легкие: го­лосовая щель у плода находится в сомкнутом состоянии.

После родов поступление кислорода в организм новорожденно­го прекращается, так как пуповина перевязывается. Концентрация 02 в крови плода постепенно уменьшается. В то же время постоян­но увеличивается содержание С02, что приводит к закислению внут­ренней среды организма. Эти изменения регистрируются хеморецеп­торами дыхательного центра, который расположен в продолговатом мозге. Они сигнализируют об изменении гомеостаза, что ведет к активации дыхательного центра. Последний посылает импульсы к дыхательным мышцам — возникает первый вдох. Голосовая щель раскрывается, и воздух устремляется в нижние дыхательные пути и далее — в альвеолы легких, расправляя их. Первый выдох сопровож­дается возникновением характерного крика новорожденного. На вы­дохе альвеолы уже не слипаются, так как этому препятствует сурфак­тант. У недоношенных детей, как правило, количество сурфактанта недостаточно для обеспечения нормальной вентиляции легких. По­этому у них после рождения часто наблюдаются различные дыхатель­ные расстройства.

Дыхательные объемы. Для оценки функции легких большое значение имеет определение дыхательных объемов, т.е. количества вдыхаемого и выдыхаемого воздуха. Данное исследование проводится при помощи специальных приборов — спирометров.

Определяют дыхательный объем, резервные объемы вдоха и выдо­ха, жизненную емкость легких, остаточный объем, общую емкость легких.

Дыхательный объем (ДО) — количество воздуха, которое че­ловек вдыхает и выдыхает при спокойном дыхании за один цикл (рис. 8.13). Он составляет в среднем 400 — 500 мл. Объем воздуха, про­ходящий через легкие при спокойном дыхании за 1 мин, называют минутным объемом дыхания (МОД). Его вычисляют, ум­ножая ДО на частоту дыхания (ЧД). В состоянии покоя человеку требуется 8 —9 л воздуха в минуту, т.е. около 500 л в час, 12000 — 13 000 л в сутки.

При тяжелой физической работе МОД может многократно увели­чиваться (до 80 и более литров в минуту). Необходимо отметить, что далеко не весь объем вдыхаемого воздуха участвует в вентиляции альвеол. Во время вдоха часть его не доходит до ацинусов. Она оста­ется в воздухоносных путях (от носовой полости до терминальных бронхиол), где отсутствует возможность для диффузии газов в кровь. Объем воздухоносных путей, в котором находящийся воздух не при­нимает участия в газообмене, называют «дыхательным мертвым пространством». У взрослого человека на «мертвое пространство» приходится около 140—150 мл, т.е. примерно V3 ДО.

 

 

Рис. 8.13. Спирограмма: ДО — дыхательный объем; РОВд — резервный объем вдоха; РОВыд — резервный объем выдоха; ЖЕЛ — жизненная емкость легких

Резервный объем вдоха (РОВд) — количество воздуха, которое человек может вдохнуть при самом сильном максимальном вдохе после спокойного вдоха, т.е. сверх дыхательного объема. Он состав­ляет в среднем 1500—3000 мл.

Резервный объем выдоха (РОВыд) — количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха. Он составляет около 700—1000 мл.

Жизненная емкость легких (ЖЕЛ) — это количество воздуха, ко­торое человек может максимально выдохнуть после самого глубокого вдоха. Этот объем включает в себя все предыдущие (ЖЕЛ = ДО + РОВд + РОВыд) и составляет в среднем 3500—4500 мл.

Остаточный объем легких (ООЛ) — это количество воздуха, ос­тающееся в легких после максимального выдоха. Этот показатель в сред­нем равен 1000—1500 мл. За счет остаточного объема препараты лег­ких не тонут в воде. На этом явлении основана судебно-медицинская экспертиза мертворожденности: если плод родился живым и дышал, его легкие, будучи погруженными в воду, не тонут. В случае же рождения мертвого, не дышавшего плода, легкие опустятся на дно. Кстати, свое название легкие получили именно благодаря наличию в них воздуха. Воздух значительно уменьшает общую плотность этих органов, делая их легче воды.

Общая емкость легких (ОЕЛ) — это максимальное количество воздуха, которое может находиться в легких. Этот объем включает в себя жизненную емкость и остаточный объем (ОЕЛ = ЖЕЛ + ООЛ). Он составляет в среднем 4500 —6000 мл.

Жизненная емкость легких находится в прямой зависимости от степени развития грудной клетки. Известно, что физические упраж­нения и тренировка дыхательной мускулатуры в молодом возрасте способствуют формированию широкой грудной клетки с хорошо развитыми легкими. После 40 лет ЖЕЛ начинает постепенно умень­шаться.

Диффузия газов. Состав вдыхаемого и выдыхаемого воздуха до­вольно постоянен. Во вдыхаемом воздухе содержится 02 около 21 %, С02 — 0,03 %. В выдыхаемом: 02 около 16—17 %, С02 — 4 %. Следу­ет отметить, что выдыхаемый воздух отличается по составу от альвео­лярного, т.е. находящегося в альвеолах (02 — 14,4%, С02 — 5,6%). Связано это с тем, что при выдохе содержимое ацинусов смешива­ется с воздухом, находящимся в «мертвом пространстве». Как уже было сказано, воздух этого пространства не принимает участия в газообмене. Количество вдыхаемого и выдыхаемого азота практиче­ски одинаково. Во время выдоха из организма выделяются пары воды. Остальные газы (в том числе, инертные) составляют ничтож­но малую часть атмосферного воздуха. Следует отметить, что чело­век способен переносить большие концентрации кислорода в окру­жающей его воздушной среде. Так, при некоторых патологических состояниях в качестве лечебного мероприятия используют ингаля­цию 100 % 02. В то же время длительное вдыхание этого газа вызы­вает негативные последствия.

Переход газов через аэрогематический барьер обусловлен разно­стью их концентраций по обе стороны этой мембраны. Для газовой среды применяют такое понятие, как «парциальное давление», это та часть общего давления газовой смеси, которая приходится на данный газ. Если принять атмосферное давление за 760 мм рт. ст., парциаль­ное давление кислорода в воздушной смеси будет составлять при­мерно 160 мм рт. ст. (760 мм рт. ст. 0,21). Парциальное давление уг­лекислого газа в атмосферном воздухе при этом около 0,2 мм рт. ст. В альвеолярном воздухе парциальное давление кислорода прибли­зительно равно 100 мм рт. ст., парциальное давление углекислого газа — 40 мм рт. ст.

Если газ растворен в жидкой среде, то говорят о его напряжении (по сути, напряжение — это синоним парциального давления). На­пряжение 02 в венозной крови примерно 40 мм рт. ст. Следователь­но, градиент (разница) давления для кислорода между альвеолярным воздухом и кровью составляет 60 мм рт. ст. Благодаря этому возможна диффузия этого газа в кровь. Там он в основном связывается с ге­моглобином, превращая его в оксигемоглобин. Кровь, содержащая большое количество оксигемоглобина, называется артериальной.

У  здоровых лиц гемоглобин насыщается кислородом на 96 %. В 100 мл артериальной крови в норме содержится около 20 мл кислорода. В таком же объеме венозной крови кислорода содержится только 13—15 мл.

Углекислый газ, образовавшийся в тканях, попадает в кровь (так­же по градиенту концентрации: в тканях углекислый газ содержится в больших количествах). С гемоглобином соединяется только 10 % поступившего количества этого газа. В результате такого взаимодей­ствия образуется карбгемоглобин. Большая же часть углекислого газа вступает в реакцию с водой. Это приводит к образованию угольной кислоты (Н2СО3). Данная реакция ускоряется в 20000 раз особым ферментом, находящимся в эритроцитах — карбоангидразой. Уголь­ная кислота диссоциирует (распадается) на протон водорода (Н+) и бикарбонат-ион (HCO3-). Большая часть углекислого газа переносит­ся кровью именно в виде бикарбоната. Напряжение углекислого газа в венозной крови составляет примерно 46 мм рт. ст. Следовательно, градиент давления для него будет равен 6 мм рт. ст. (парциальное давление углекислого газа в альвеолярном воздухе — 40 мм рт. ст.) в пользу крови. Направление диффузии для углекислого газа следу­ющее: из крови во внешнюю среду. В течение 1 мин из организма че­ловека в состоянии покоя удаляется около 230 мл углекислого газа. Таким образом, диффузия идет из среды с большим ПД (напряже­нием) в среду с меньшим парциальным давлением (напряжением), т.е. по разности концентрации.

Естественный состав атмосферного воздуха может существенно меняться за счет производственной и хозяйственно-бытовой де­ятельности людей, природных катаклизмов. Появление в его составе угарного газа в концентрации более 100—200 мг/м3 способствует воз­никновению отравлений. При этом СО образует с гемоглобином ус­тойчивое соединение — карбоксигемоглобин, который не в состоянии связывать кислород. Кроме угарного газа существует множество дру­гих веществ, способных существенно влиять на здоровье человека. К ним относятся, например, соединения серы (сероводород, ангидри­ды, пары серной кислоты), оксиды азота, канцерогены (бензпирен), радиоактивные вещества и др.

Повышенное и пониженное атмосферное давление также соот­ветствующим образом влияют на процессы дыхания. При понижен­ном давлении снижается и ПД 02. Это наблюдается, например, при подъеме на высоту. На высоте до 3000 м над уровнем моря человек чувствует себя вполне удовлетворительно. Компенсаторно увеличи­вается частота дыхания, ускоряется кровообращение. Организм адаптируется к меньшему количеству кислорода, содержащемуся в воздухе. При подъеме выше 4000—6000 м появляются одышка, при­ступы удушья, сердцебиение; некоторые участки кожи становятся цианотичными (фиолетовой окраски). Возникает так называемая «горная болезнь».

Повышение давления наблюдается, например, при нырянии с ак­валангом. Через каждые 10 м глубины давление повышается на 1 атм. При этом в кровь попадает большое количество газов. При быстром подъеме с глубины давление резко снижается. Газы, растворенные в крови, выходят из нее и могут образовывать пузырьки (как при от­крывании бутылки с газированной водой). Образовавшиеся пузырь­ки с током крови переносятся в мелкие сосуды и закупоривают их. Возникает кессонная болезнь, которая может привести к смерти. Чтобы избежать ее появления, подъем с глубины следует осуществ­лять постепенно.

Регуляция дыхания. Изменения состава окружающей газовой среды, тяжелая физическая работа, некоторые заболевания дыхатель­ной системы приводят к снижению концентрации кислорода, ра­створенного в крови. Кислородный дефицит носит название гипок­сии. В то же время любые обменные процессы сопровождаются вы­делением углекислого газа. Увеличение концентрации С02 в организ­ме называется гиперкапнией. Как правило, повышение содержания углекислого газа сопровождается закислением внутренней среды организма, или ацидозом.

В организме существуют специальные рецепторы, которые спо­собны контролировать концентрации веществ, растворенных в кро­ви. Их называют хеморецепторами. Они незамедлительно реагируют даже на малейшие изменения в содержании тех или иных веществ во внутренней среде. Эти рецепторы расположены в каротидном синусе (в области бифуркации общей сонной артерии), а также в центральной нервной системе (в продолговатом мозге). В регуля­ции дыхания участвуют также чувствительные нервные окончания, реагирующие на растяжение легких, химическое раздражение дыха­тельных путей. Важную роль играют проприоцепторы дыхательных мышц. От всех перечисленных рецепторов информация поступает в центральную нервную систему, где она интегрируется и изменяет ра­боту дыхательного центра, который локализуется в продолговатом мозге.

Дыхательный центр регулирует частоту дыхания постоянно, авто­матически генерируя нервные импульсы. В нем выделяют два отде­ла: инспираторный (центр вдоха) и экспираторный (центр выдоха). При этом центр дыхания обладает способностью реагировать на повышение концентрации углекислого газа в крови или спинномоз­говой жидкости (на снижение в этих средах концентрации кислоро­да он практически не реагирует). Таким образом, повышение кон­центрации углекислого газа в крови приводит к увеличению интен­сивности дыхания. В первую очередь увеличивается его частота. Ды­хательный центр тесно связан с сосудодвигательным, также располо­женным в продолговатом мозге. Последний обеспечивает увеличение количества крови, проходящей через малый круг кровообращения. От дыхательного центра импульсы идут в спинной мозг, который обеспе­чивает иннервацию дыхательных мышц.

Секрецию бронхиальных желез, а также величину их просвета ре­гулирует вегетативная нервная система. Под действием симпатичес­кой нервной системы просвет бронхов расширяется, секреция угне­тается. Парасимпатическая система вызывает обратные эффекты. Кроме того, угнетать работу желез и расширять просвет бронхов спо­собны различные биологически активные вещества (адреналин, нор- адреналин). Противоположное действие оказывают ацетилхолин, ги­стамин.

Как уже упоминалось, оптимальным является носовое дыхание. Оно создает сопротивление потоку воздуха, благодаря чему опреде­ляется состав воздуха (оцениваются запахи), происходит согревание и увлажнение воздуха. При этом формируется медленное и глубокое дыхание, которое создает оптимальные условия для газообмена в альвеолах, улучшает распределение сурфактанта, препятствует спа­дению альвеол и, как следствие, спадению (ателектазу) легких. При носовом дыхании также происходит очищение вдыхаемого воздуха.

Крупные частицы пыли задерживаются в преддверии полости носа при прохождении через фильтр волос.

При вдыхании дыма, газов, остро пахнущих веществ происходит рефлекторная задержка дыхания, сужение голосовой щели, сужение бронхов (бронхоконстрикция). Эти рефлексы защищают нижние дыхательные пути и легкие от проникновения в них раздражающих веществ.

Временная рефлекторная остановка дыхания — апноэ — про­исходит при действии воды на область нижнего носового хода (при умывании, нырянии), а также во время акта глотания, предохраняя дыхательные пути от попадания в них воды или пищи. При раздра­жении рецепторов слизистой оболочки гортани, трахеи, бронхов возникает защитный кашлевой рефлекс: после глубокого вдоха про­исходит резкое сокращение мышц выдоха; голосовая щель открыва­ется и воздух устремляется наружу. Раздражение чувствительных окончаний тройничного нерва, расположенных в слизистой оболочке полости носа, вызывает рефлекс чиханья. Механизм чиханья анало­гичен кашлевой реакции. Раздражение рефлексогенной зоны поло­сти носа также вызывает интенсивное слезотечение. Слеза стекает через носослезный канал в полость носа и, смывая раздражающее вещество, выполняет защитную функцию.

 

Контрольные вопросы

1. Назовите этапы дыхания.Перечислите околоносовые пазухи.

2. Какие органы входят в состав верхних и нижних дыхательных путей?

3. Какие хрящи образуют основу гортани?

4. Какие отделы выделяют в полости гортани?

5. Охарактеризуйте функции гортани.

6. Назовите структуры, образующие бронхиальное дерево.

7. Какие доли, поверхности и края выделяют в легком?

8. Перечислите границы легких.

9. Что такое пневмоторакс? Назовите основные его виды.

10. Перечислите органы переднего и заднего средостения.

11. Дайте характеристику дыхательных объемов.

12. Где расположен дыхательный центр? Какова его роль?